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1 CEA/Saclay, Service de Physique Théorique, 91191 Gif-sur-Yvette Cedex, France
2 Department of Physics and Astronomy, University of Amsterdam, Valckenierstraat 65,

1018 XE Amsterdam, The Netherlands
3 Yerevan Physics Institute, Alikhanian Brothers St. 2, Yerevan 375036, Armenia

Received 20 February 2001 and Received in final form 12 June 2001

Abstract. We investigate a mean-field approach to a quantum Brownian particle interacting with a quan-
tum thermal bath at temperature T , and subjected to a non-linear potential. An exact, partially classical
description of quantum Brownian motion is proposed, which uses negative probabilities in its intermediate
steps. It is shown that properties of the quantum particle can be mapped to those of two classical Brownian
particles in a common potential, where one of them interacts with the quantum bath, whereas another
one interacts with a classical bath at zero temperature. Due to damping the system allows a unique and
non-singular classical limit at ~ → 0. For high T the stationary state becomes explicitly classical. The
low-temperature case is studied through an effective Fokker-Planck equation. Non-trivial purely quantum
correlation effects between the two particles are found.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.10.Gg Stochastic analysis (Fokker-
Planck, Langevin) – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

The main conceptual problem in quantum mechanics re-
mains the link between the quantum and the classical
worlds. Therefore, significant efforts were made over years
to understand at least part of the quantum world in clas-
sical notions. Curiously, the quasiclassical domain, which
should be the main subject of this understanding, is still
itself under extensive investigation. Indeed, it is known
to be non-trivial; in a sense it can be even more com-
plex that the classical and quantum extremes alone. It is
important to realize in this context that the quasiclassi-
cal domain is not exhausted by the conventional ansatz
~ → 0 [1–3], since this limit is singular (therefore some
a priori concepts similar to coarse-graining are sometimes
involved [3]), and since it does not commute with other
limits of physical interest, e.g. the limit of large times.

One of the established approaches to the quasiclassi-
cal domain is a collection of mean-field methods known
as Gaussian decoupling procedure or time-dependent
variational approximation [4–7]. Mean-field (variational,
Hartree-Fock) methods are well-known in the quantum
theory, and were applied for a while in many different
areas. This set of methods appeared to be especially suit-
able for the quasiclassical domain, since it attempts to
realize in a simple and straightforward way the above-
mentioned program of understanding the quantum theory
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in classical terms. An impressive amount of experimen-
tal confirmations, in particular in quantum chemistry and
atomic physics [4], numerical and self-consistency checks
were made for those methods. Therefore, they have al-
ready become a well-formulated and sound approach.

In the present paper we apply this mean-field method
to the simplest quantum dissipative system: A quantum
Brownian particle interacting with a thermal bath. There
are specific reasons to study this type of quantum systems
in the context of the above-mentioned problems. In con-
trast to closed Hamiltonian systems, quantum dissipative
systems are more reliable candidates to understand their
physics in classical terms. Indeed, a non-unitary evolution
provides a natural mechanism of decoherence [14], and the
need of artificial coarse-graining procedures is gotten rid
of. In the light of this conceptual advantage it should be
surprising that the basic understanding of their theory is
still rather fragmentary. This is so mainly because one
can use neither general properties of unitary evolution,
which describes closed systems, nor Markovian properties
of the classical stochastic dynamics, since due to the cor-
relation time ~/T , which is relevant at low temperatures,
the corresponding statistical dynamics is essentially non-
Markovian. Each of these properties has important gen-
eral consequences, which are, thus, absent in the quan-
tum dissipative case [9]. The only exceptions are weakly
damped high-temperature systems, where an influence of
the bath is described classically, whereas the rest remains
quantum-mechanical [14]. We will not be concerned with
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them within the present paper. A fairly general theory of
strongly-damped and/or low-temperature dissipative sys-
tems is still under construction, though some suggestive
results were obtained recently [15], where for a class of
systems two of us proposed a consistent statistical ther-
modynamical theory of quantum Brownian motion.

Our plan is the following. In Section 2 we will first
briefly recall some known facts on quantum Langevin
equations and quantum noise. Here we obtain also gener-
alized Wigner-Moyal and von Neumann equations, which
are exact consequences of the quantum dynamics, but de-
scribe the Brownian particle in almost classical terms. The
Gaussian approximation will be presented in Section 3,
where we will obtain the basic equations of the present
paper, and draw some general conclusions. Here we will
discuss, in particular, what is the constructive role of fric-
tion when establishing quantum-classical transition. The
effective Fokker-Planck dynamics will be discussed in Sec-
tion 4. In Section 5 we study low-temperature properties
of the model. We conclude in the last section.

2 Quantum Langevin equation
and Liouville-Moyal equation

2.1 Quantum Langevin equation

This fundamental equation of quantum Brownian motion
theory is derived from the exact Hamiltonian description
of a subsystem (Brownian particle) and a thermal bath,
when tracing out the degrees of freedom of the bath. The
standard assumption is that at the moment t = 0 the
states of the subsystem and the bath were decoupled from
each other, and the bath was in equilibrium at tempera-
ture T [9,10,15]. Further, the influence of the particle to
the bath is assumed to be sufficiently small; thus, only
the linear modes of the bath are excited, and the interac-
tion between the particle and the bath is linear. Since the
dynamics of the bath is linear, it can be solved exactly.
Following this line of exact calculations [9], one derives
the quantum Langevin equation

˙̂x =
p̂

m
,

˙̂p+
1
m

∫ t

0

dt′G(t− t′)p̂(t′) + V ′(x̂)

= −γΓ e−Γtx̂(0) + η̂(t), (1)

where p̂(t) x̂(t) are Heisenberg operators of momentum
and coordinate, and V (x) is an external potential. The
parameter γ is the damping constant, which determines
the interaction between the bath and the particle. For
γ → 0 one gets from equation (1) the usual Heisenberg
equations. Γ is the maximal characteristic frequency of
the bath, and it determines the retardation time of the
friction kernel

G(t) = γΓ e−Γ |t|. (2)

The operator η̂(t) is the random noise, which appeared
due to the uncertain character of the initial (equilibrium)
distribution of the bath. This noise can be shown to be
Gaussian, due to the fact that the thermal bath is a har-
monic system and was in equilibrium. It has the following
properties:

K(t) =
1
2
〈η̂(t)η̂(0) + η̂(0)η̂(t)〉η̂ ≡

1
2
〈η̂(t); η̂(0)〉η̂

=
~γ
π

∫ ∞
0

dω ω coth
(
~ωβ

2

)
cos(ωt)

1
1 + (ω/Γ )2

,

(3)

η̂(t)η̂(0)− η̂(0)η̂(t) ≡ [η̂(t), η̂(0)] = i~
∂γ(t)
∂t
· (4)

Hereafter we use

〈Â; B̂〉 ≡ 1
2
〈ÂB̂ + B̂Â〉, [Â, B̂] ≡ ÂB̂ − B̂Â,

[Â, B̂]+ ≡ ÂB̂ + B̂Â (5)

for any operators Â, B̂.
The connection between properties of the noise and the

friction kernel is the consequence of quantum fluctuation-
dissipation theorem [9]. Equation (1) with physically suit-
able forms of the potential and friction describes a rich
variety of physical phenomena (see Refs. in [9,10,15]).

2.1.1 Quasi-Ohmic limit

In the present paper we shall restrict ourselves to the
quasi-Ohmic case [8], where Γ is much larger than other
characteristic times, but still finite. The main reason of
this approximation is to have an exact equation for the
Wigner function of the Brownian particle, which will be
derived in the next section.

For the quantum noise one has that K(t) = − ln(Γt) >
0 for small times, and for t� 1/Γ , K(t) is anticorrelated
with the universal correlation time ~β/2π:

K(t) = −πγT
2

~

[
sinh

(
πt

β~

)]−2

, (6)

Being coherent, the low-temperature quantum thermal
bath necessarily generates a colored noise. The classical
white noise situation is recovered when taking the high-
temperature limit (~β → 0). In general, this should be
done before the limit Γ → ∞. Notice that in contrast
with the classical case, the quantum noise does not disap-
pear for T → 0, since even in this limit the initial state of
the quantum thermal bath remains indeterminate.

In the quasi-Ohmic regime one can expand the memory
kernel for the friction in equation (1) as:∫ t

0

dt′e−Γ (t−t′)p̂(t′) =
1
Γ
p̂(t)− 1

Γ 2
˙̂p(t)

− 1
Γ

e−Γtp̂(0) +
1
Γ 2

e−Γt ˙̂p(0). (7)
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For t > 0 and large Γ the exponentially small factors de-
pending on the initial conditions can be omitted in equa-
tions (1, 7), and we finally get

˙̂p+
γ

m
p̂(t) + V ′(x̂) = η̂(t), (8)

In other words, for not very small times one can regularize
only the noise, but keep the friction local, when consider-
ing the quasi Ohmic case.

Let us finally notice the following general commutation
relation between the noise and an arbitrary operator Â(t)
of the particle [9,11]:

[Â(t), η̂(s)] =
∫ t

0

dt′[Â(t), x̂(t′)]
d
ds
γ(s− t′). (9)

Here the coordinate operator appeared just because the
interaction with the thermal bath is taking place through
the coordinate [11,9]. In the quasi-Ohmic case this will
go to

[Â(t), η̂(s)] = 2γ
d
ds
{θ(t− s)[Â(t), x̂(s)]}, (10)

where θ(t − s) is the step-function (θ(x) = 1 for x > 0
and θ(x) = 0 for x < 0) defined to be 1/2 at t = s. It is
seen that [η̂(t), x̂(t)] = [η̂(t), p̂(t)] = 0. One could attribute
these relations to causality, but they are an emergent prop-
erty of the quasi-Ohmic limit.

2.2 Generalized Wigner-Moyal equation

The quantum Langevin equation (8) is a non-linear oper-
ator equation, and as such it can hardly be handled di-
rectly. Here we will present a generalized Wigner-Moyal
equation for the corresponding Wigner function of the
particle, which exactly corresponds to equation (8) in the
same sense as the pure Heisenberg equations correspond
to the usual Wigner-Moyal equation. Besides technical ad-
vantages which will be used further, this equation presents
an interesting account for an exact description of the non-
linear quantum problem through proper classical terms.

One is looking for an equation for the Wigner function:

W (p, x, t) = 〈trρ0 Ŵ (p̂, x̂, t)〉η̂,

Ŵ (p̂, x̂, t) =
∫

da db
4π2

exp(−iax− ibp+ iax̂(t) + ibp̂(t)),

(11)

where ρ0 is the initial (at the moment t = 0) density
matrix of the Brownian particle. Ŵ (p̂, x̂, t) is the support
of the Wigner function, which can be viewed as a quan-
tum analogue of the delta-function. In the classical limit,
where x̂ and p̂ approximately commute, W (p, x, t) tends
to the ordinary probability distribution of the coordinate
and momentum.

Since the equation for W (p, x, t) is expected to be
linear, one is interested by an equation for Ŵ (p̂, x̂, t),

whereas the averages can be taken later. The derivation
of this equation is fairly straightforward, since it uses
equations (8, 11) and the standard commutation relation
[x̂(t), p̂(t)] = i~. We will write only the final result:

∂Ŵ (p̂, x̂, t)
∂t

= − ∂

∂x
(
p

m
Ŵ ) +

∂

∂p
([V ′(x) +

γ

m
p]Ŵ )

+
∞∑
n=1

(i~/2)2n

(2n+ 1)!
∂2n+1V

∂x2n+1

∂2n+1Ŵ

∂p2n+1
− ∂

∂p
(η̂Ŵ ). (12)

The first three terms in the r.h.s of this equation are
the standard drift terms of the classical Liouville equa-
tion, and the sum represents a purely quantum correction,
which comes from the non-linearity of the potential.

Our object of interest is the last term, which upon
averaging will look like

∂

∂p
〈η̂(t)Ŵ (t)〉η̂. (13)

Notice that η̂(t), Ŵ (t) commute, since η̂(t) commutes with
x(t), p(t), and Ŵ (t) can be regarded as a product of two
terms, which depend only on x̂(t) and p̂(t) correspond-
ingly.

Let us adopt the following formal expansion for Ŵ (t)

Ŵ (t|η) = Ŵ (t|0)

+
1
n!

∞∑
n=1

∫ t

0

ds1...dsnR(s1, .., sn)Π[η̂(s1)...η̂(sn)], (14)

Π[η̂(s1)...η̂(sn)] =
1
n!

∑
i1 6=... 6=in

η̂(si1)...η̂(sin). (15)

Here Π[η̂(s1)...η̂(sn)] is the symmetrized product; the co-
efficients R(s1, .., sn) are c-numbers. Due to the fact that
[Ŵ (t), η̂(t)] = 0 one has:

〈η̂(t)Ŵ (t)〉η̂ = 〈η̂(t); Ŵ (t)〉η̂ =
∞∑
n=1

1
n!

∫ t

0

ds1...dsnR(s1, .., sn)〈η̂(t);Π[η̂(s1)...η̂(sn)]〉η̂.

(16)

Since η̂(t) is a Gaussian random operator with 〈η̂(t)〉η̂ = 0,
one can use Wick’s theorem: The correlation of an odd
number of η̂’s vanishes. The correlation of an even number
of η̂’s is equal to the sum of products of pair correlations,
the sum being taken over all pairings. For example:

〈η̂(t1)η̂(t2)η̂(t3)η̂(t4)〉η̂ = 〈η̂(t1)η̂(t2)〉η̂〈η̂(t3)η̂(t4)〉η̂
+ 〈η̂(t1)η̂(t3)〉η̂〈η̂(t2)η̂(t4)〉η̂
+ 〈η̂(t1)η̂(t4)〉η̂〈η̂(t2)η̂(t3)〉η̂.

(17)

In this way one derives:

〈η̂(t);Π[η̂(s1)...η̂(sn)]〉η̂ =
n∑
α=1

〈η̂(t); η̂(sα)〉η̂ 〈Π[η̂(s1)...η̂(sα−1)η̂(sα+1)...η̂(sn)]〉η̂.

(18)
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Having substituted this equation to equation (16) one gets

〈η̂(t)Ŵ (t)〉η̂ =
∞∑
n=1

1
(n− 1)!

∫ t

0

ds1〈η̂(t); η̂(s1)〉η̂

×
∫ t

0

ds2...dsnR(s1, .., sn)〈Π[η̂(s2)...η̂(sn)]〉η̂. (19)

Now one notices that the only feature of the quan-
tum noise which enters here is the autocorrelation func-
tion 〈η̂(t); η̂(s)〉η̂ = K(t − s) because in the end
〈Π[η̂(s2)...η̂(sn)]〉η̂ can be expressed through it using
equation (18) several times. So nothing will change if we
replace η̂(t) in equation (19) by a classical Gaussian noise
η(t) which has the same autocorrelation function K(t−s),

〈η̂(t)Ŵ (t)〉η̂ = 〈η(t)Ŵ (t)〉η. (20)

Now we substitute this result into equations (12), take the
average over the initial state, but take out the average over
the classical noise:

∂tw = −∂x(
p

m
w) + ∂p([V ′(x) +

γ

m
p− η(t)]w)

+
∞∑
n=1

(i~/2)2n

(2n+ 1)!
∂2n+1V

∂x2n+1

∂2n+1w

∂p2n+1
, (21)

where the true Wigner function W (p, x, t) will be obtained
by averaging the auxiliary object w(p, x, t) over the clas-
sical noise η(t):

W (p, x, t) = 〈w(p, x, t)〉η . (22)

Thus in the quasi-Ohmic limit one can treat the quantum
noise as a purely classical object as far as the Wigner func-
tion is concerned. Notice that this result is exact and relies
only on the quasi-Ohmic limit. In that respect it is differ-
ent from the description through semiclassical Langevin
equations, where in the overdamped (large γ) limit one
also gets an analogue of equation (21) but without the
~-dependent terms.

2.3 Generalized von Neumann equation

Here we will investigate the von Neumann equation for
a matrix r(x, x′, t), which corresponds to the auxiliary
Wigner function w(p, x, t):

w(p, x, t) =
1

2π~

∫
du r(x− u

2
, x+

u

2
, t) eipu/~. (23)

Since equation (21) is linear, one directly obtains for
r(x, x′, t) = 〈x′|r̂(t)|x〉

− i~
∂

∂t
r(x, x′, t) =

[
~2

2m
∂2

∂x2
− ~2

2m
∂2

∂x′2
− V (x) + V (x′)

+η(t)(x− x′) +
iγ~
m

(x− x′)( ∂
∂x
− ∂

∂x′
)
]
r(x, x′, t),

(24)

or in the equivalent operator notations:

dr̂
dt

= − i
~

[Ĥ − x̂η, r̂] +
iγ

2~m
[{p̂, r̂}, x̂]. (25)

The true density matrix ρ̂ can be obtained after averaging
over the classical noise η(t):

ρ̂(t) = 〈r̂(t)〉η. (26)

Therefore, all possible averages are obtained as

tr(ρ̂Â) = 〈tr(r̂Â)〉η, (27)

where an operator Â lives in the Hilbert space of the
Brownian particle.

It should be stressed that r̂ is not a density matrix it-
self, but rather a tool to calculate averages. Indeed starting
from equation (25) one easily gets

d
dt

tr r̂ = 0 → tr r̂(t) = 1, (28)

d
dt

tr(r̂(t)2) =
γ

m
tr(r̂(t)2) → tr(r̂(t)2) = eγt/m tr(r̂(0)2).

(29)

These indicate that r has negative eigenvalues for t > 0,
the absolute value of which grows with time. However,
positive eigenvalues compensate this growth in such a way
that equation (28) holds. In particular, equations (28, 29)
show that a dissipative system cannot be described by
a wave function even if the averaging over the noise is
postponed.

Thus we see that the “classicalization” of the noise is
not just a technical procedure, but it has to be accom-
panied with a change of interpretation: The unaveraged
density matrix r̂ is not a true density matrix, since it does
have negative eigenvalues. In other words, explicitly classi-
cal components of the dynamics lead to the appearance of
negative probabilities. On the other hand, there are no rea-
sons to consider those negative eigenvalues as something
unphysical: Our derivation of equations (21, 25) was exact,
and later we will present other indications that neither the
true density matrix, nor averages calculated according to
equation (27) show unphysical properties (see Eq. (53),
and the discussion after (56)). The situation is the same
as for the Wigner function at a given time, which is not
a positive probability density, but can be safely used to
evaluate expectation values by integration.

The appearance of negative probabilities as a result of
imposing partially classical properties has certain analo-
gies with the classical interpretation of quantum entan-
glement, and in particular Einstein-Podolsky-Rosen phe-
nomenon. This interpretation also uses negative (though
not directly observable) probabilities [12].

Finally we would like to mention that the reported
non-positive character of the unaveraged density ma-
trix has nothing to do with the known technical prob-
lem which also appears through non-positive (averaged)
density matrices in certain quantum Markovian diffusion
equations [13]. There the problem is merely technical and



A.E. Allahverdyan et al.: Mean-field theory of quantum Brownian motion 91

arises due to the fact that the Markovian approxima-
tion in the quantum theory of open systems is essentially
time-inhomogeneous, so that its careless use leads to such
problems. Indeed, the problem disappears after a more
consistent treatment of the situation [13]. In our case,
in contrast, the non-positive character of the unaveraged
density matrix is an exact consequence of our attempt to
handle the quantum noise classically.

3 Gaussian decoupling procedure

Equation (21) is, of course, intractable in general. It joins
all technical difficulties of the classical Liouville equation
with a given noise and friction and those of the pure Moyal
equation. In other words some substantial simplifications
are necessary to proceed further. Here we will apply the
mean-field approach, namely, a solution of equation (21)
will be looked through its moments, and the Gaussian
decoupling procedure will be applied to the higher-order
moments. By its spirit this is very similar to the Grad
method in the kinetic theory of rarefied gases [17], and
has been applied recently in quantum theory of closed
systems as well [4,6]. It is clear that the consistency of this
approximation should be checked together with the final
solution. At the moment we will notice only that since its
application is connected with the weakness of quantum
fluctuations, it will have a reliable range of validity in the
quasiclassical domain.

The working variables will be

dx = 〈x̂〉 =
∫

dp dx xw(p, x, t), (30)

dp = 〈p̂〉 =
∫

dp dx pw(p, x, t), (31)

dxx = 〈(x̂− 〈x̂〉)2〉 =
∫

dp dx (x− 〈x〉)2w(p, x, t), (32)

dpp = 〈(p̂− 〈p̂〉)2〉 =
∫

dp dx (x− 〈x〉)2w(p, x, t), (33)

dxp =
1
2
〈(x̂− 〈x̂〉)(p̂− 〈p̂〉) + (p̂− 〈p̂〉)(x̂− 〈x̂〉)〉

=
∫

dp dx (x− 〈x〉)(p − 〈p〉)w(p, x, t). (34)

For the higher-order correlations one assumes the
Gaussian decoupling:∫

dp dx w(p, x, t)(x − 〈x〉)2n =

(2n− 1)!!
[∫

dp dx w(p, x, t)(x− 〈x〉)2

]n
, (35)∫

dp dx w(p, x, t)(p − 〈p〉)(x− 〈x〉)2n+1

= (2n+ 1)!!
[∫

dp dx w(p, x, t)(p − 〈p〉)
]

×
[∫

dp dx w(p, x, t)(x− 〈x〉)2

]n
. (36)

This just means that w(p, x, t) is restricted to the subspace
of Gaussian functions:

w (p, x, t|dxx, dxp, dpp, dx, dp) =
1

2π
√
∆

× exp

(
− 1

2∆
[dpp(x− dx)2 + dxx(p− dp)2

− 2dxp(x− dx)(p− dp)]
)
,

∆ = dxxdpp − d2
xp. (37)

Applying equations (30–36) in equation (21) one gets the
following equations of motions, which are now classical
equations for classical variables:

d
dt
dx =

dp
m
,

d
dt
dp = − γ

m
dp + η(t)− V ′(dx) +

∞∑
n=1

V (2n+1)(dx)
(2n)!!

dnxx,

d
dt
dxx =

2
m
dxp,

d
dt
dpp = −2γ

m
dpp − 2

∞∑
n=1

V (2n)(dx)
(2n− 2)!!

dn−1
xx dxp,

d
dt
dxp = − γ

m
dxp +

1
m
dpp −

∞∑
n=1

V (2n)(dx)
(2n− 2)!!

dnxx. (38)

This set of equations can be considerably simplified if the
following change of variables is made:

dx = X, (39)
dp = P, (40)

dxx = Q2, (41)

dpp = Π2 +
~2σ2

4Q2
, (42)

dxp = QΠ, (43)

where σ is chosen such that

1
σ

= tr(r2). (44)

With this change of variables equations (38) will read

d
dt
X =

P

m
, (45)

d
dt
P = − γ

m
P + η(t)− ∂H

∂X
, (46)

d
dt
Q =

Π

m
, (47)

d
dt
Π = − γ

m
Π − ∂H

∂Q
, (48)

d
dt
σ = − γ

m
σ ⇒ σ(t) = e−γt/mσ(0) = e−γt/m, (49)
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where the initial state was chosen to be pure for simplicity:
σ(0) = 1, and where H is an effective classical Hamilto-
nian:

H(P,X,Π,Q, t) =
P 2

2m
+
Π2

2m
+ V (X)

+
∞∑
n=1

V (2n)(X)
(2n)!!

Q2n +
~2σ(t)2

8mQ2
· (50)

The true Wigner function for the original quantum parti-
cle reads:

W (p, x, t) =∫
dP dX dΠ dQ w (p, x, t |P,X,Π,Q)P(P,X,Π,Q, t),

(51)

where P(P,X,Π,Q, t) is the ordinary probability distri-
bution of the classical random variables P,X,Π and Q at
the moment t.

The physical meaning of this approach is now clear.
The Hamiltonian (50) corresponds to two classical par-
ticles with coordinates X,Q and momenta P,Π. Equa-
tions (45–48) show that X-particle couples to the quan-
tum bath through the damping γP/m and noise η(t).
Although η(t) is not an operator, its correlator is still given
by the quantum spectrum K(t). Q-particle interacts with
a classical bath at zero temperature, since only in this
case a classical particle is subjected to damping, but not
to noise. The effective Hamiltonian H non-trivially cou-
ples these two particles. It is also time-dependent, though
this dependence is quite simple.

Already the general form of the effective Hamiltonian
leads us to the following important observation. As follows
from the derivation of the result, the purely classical case
corresponds to ~ → 0, Π → 0, q → 0. Without damping
one will have σ = const., which just reflects unitary evo-
lution, where r2 is conserved. Since Q, Π typically have
order O(~), all terms in equation (50) should disappear in
the classical limit. For all terms besides the last one this
disappearance is clear. This last term can make the classi-
cal limit non-unique or even singular. This phenomenon is
well-known in quantum chaos [2,6]. Moreover, even fairly
simple integrable systems can display singularities in the
classical limit [3]. Now we observe that this dangerous
term ~2σ(t)2/(8mQ2) disappears with the characteristic
time m/γ, thereby ensuring the relatively straightforward
classical limit in a damped system. Notice in this con-
text that usually it is only the noise, which is believed
to facilitate the classical limit, providing a mechanism for
decoherence [14]. It is useful to mention that the Gaussian
property of the quantum noise (see the discussion before
Eq. (3)) was important in the derivation of the generalized
Wigner-Moyal equation (21) and for the existence of the
effective Hamiltonian (50).

Notice that the equality

dxxdpp − d2
xp =

~2σ2

4
, (52)

when σ given by equation (49) is less than one, does not
indicate a breaking of the uncertainty relations, since r̂
itself is not a density matrix. The correct uncertainty re-
lation will read as(
〈〈x̂2〉〉η − 〈〈x̂〉〉2η

) (
〈〈p̂2〉〉η − 〈〈p̂〉〉2η

)
− 1

4
(〈〈(x̂− 〈〈x̂〉〉η) (p̂− 〈〈p̂〉〉η)

+ (p̂− 〈〈p̂〉〉η) (x̂− 〈〈x̂〉〉η)〉〉η)2 ≥ ~
2

4
, (53)

where 〈〈...〉〉η is the complete average, namely the average
over r (indicated with 〈...〉), and over the classical noise
(indicated with 〈...〉η).

These observable averages can be expressed as

〈〈x̂2〉〉η − 〈〈x̂〉〉2η = 〈dxx〉η + 〈d2
x〉η − 〈dx〉2η (54)

〈〈p̂2〉〉η − 〈〈p̂〉〉2η = 〈dpp〉η + 〈d2
p〉η − 〈dp〉2η (55)

1
2

(〈〈(x̂− 〈〈x̂〉〉η) (p̂− 〈〈p̂〉〉η)

+ (p̂− 〈〈p̂〉〉η) (x̂− 〈〈x̂〉〉η)〉〉η)
= 〈dxp〉η + 〈dxdp〉η − 〈dx〉η〈dp〉η. (56)

Recall the situation with the exactly solvable harmonic
potential. Here dxx, dxp, dpp tend to zero in the long-time
limit, being decoupled from dx, dp. Then equation (53) is
obviously satisfied.

Let us briefly mention another aspect of the proposed
scheme, which can be interesting on general grounds. Two
important length-scales are associated with any quantum
system

Lc =
√
Dxx, (57)

Lq =

√
~2Dxx

4(DppDxx −D2
xp)

, (58)

where Dxx, Dpp are dispersions of the coordinate and mo-
mentum, and Dxp is the corresponding cross-correlation.
These lengths quantify the quantum (Lq) and classical
(Lc) aspects of the system, since due to uncertainty re-
lation: Lc/Lq ≥ 1, and the classical limit corresponds to
Lc/Lq � 1.

The analogous lengths for our mean-field scheme read

L̃c =
√
dxx, L̃q =

√
~2dxx

4(dppdxx − d2
xp)

, (59)

L̃c/L̃q ∼ e−γt/m. (60)

The lengths L̃c, L̃q still characterize classical and quan-
tum effects, but the uncertainty relation does not apply
to them, due the above remarks. Ratio (60) can now be
much smaller than one, namely the quantum effects can
be overdominating. The noise is needed to recover the un-
certainty relation and to limit the overspread of quantum
effects.
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To conclude this section we will notice that recently
an attempt was made to construct a mean-field theory for
a quantum Brownian particle [16]. However, the authors
did not start from the correct statement of the problem,
and were led to an incorrect result that their open quan-
tum system can be still described by a wave function (i.e.,
a pure state). In our notations this will amount to put
σ(t) = 1 for all t > 0 which is clearly incorrect in the
light of equations (49, 29). Besides the technical aspect it
contradicts to the general qualitative statement which we
draw after equation (49).

4 Fokker-Planck equation

Equations (45–48) are still fairly complicated non-linear
equations. To study them especially at low tempera-
tures we shall employ methods recently developed by two
of us [15].

We are looking for an equation describing the common
probability distribution

P(y1, y2, y3, y4, t) =
〈δ(y1 − P (t))δ(y2 −X(t))δ(y3 −Π(t))δ(y4 −Q(t))〉η.

(61)

Using equations (45–48) and direct differentiation one
will get

∂P
∂t

=
4∑
k=1

∂(vkP )
∂yk

− ∂

∂y1
〈δ(P (t)− y1)δ(X(t)− y2)

× δ(Π(t)− y3)δ(Q(t)− y4)η(t)〉η , (62)

where

v1 =
γ

m
y1(t) + ∂y1H(y1, y2, y3, y4), (63)

v2 = −y1

m
, (64)

v3 =
γ

m
y3(t) + ∂y2H(y1, y2, y3, y4), (65)

v4 = −y3

m
· (66)

Since the Gaussian noise is distributed with a func-
tional

Ω[η] ∼ exp−1
2

∫
dtds η(t)K−1(t− s)η(s), (67)

one has

η(t)Ω[η] = −
∫

dt′K(t′ − t) δΩ[η]
δη(t′)

, (68)

Substituting this equation into equation (62) one ob-
tains after functional integration by parts:

∂P
∂t

=
4∑
k=1

∂(vkP)
∂yk

− ∂

∂y1

〈
δ

δη(t′)
{δ(P (t)− y1)

× δ(X(t)− y2)δ(Π(t) − y3)δ(Q(t)− y4)}
〉
η

.

(69)

To calculate the functional derivatives entering this equa-
tion, we notice from the direct variation of the equations
of motion that:

δP (t)/δη(t′)
δX(t)/δη(t′)
δΠ(t)/δη(t′)
δQ(t)/δη(t′)

 = θ(t− t′)
{

exp
∫ t

t′
duA(u)

}
+


1
0
0
0

 ,
(70)

A(x) =


−γ/m −∂2

XXH 0 −∂2
XQH

1/m 0 0 0
0 −∂2

XQH −γ/m −∂2
XXH

0 0 1/m 0

 , (71)

where {...}+ means the chronological ordering.
Substituting the last expression into equation (62) one

gets

∂P
∂t

=
4∑
k=1

∂

∂yk

{
vkP +

∂

∂y1
〈δ(P (t) − y1)δ(X(t)− y2)

× δ(Π(t)− y3)δ(Q(t) − y4)Φk1{x(t)}〉
}
, (72)

where Φ is the following 4× 4 matrix

Φ({x(t)}) =
∫ t

0

dt′K(t′)
{

exp
∫ t

t−t′
duA(x(u))

}
+

, (73)

and Φk1 is the corresponding matrix element. This result is
still exact, but intractable, since it involves the functional
Φ of the history {X(t′)}, {Q(t′)} for t′ ≤ t. In the classical
limit one gets for t′ > 0 the white noise K(t′)→ 2γTδ(t′),

Φk1 = γTδk1,

thus reproducing the corresponding classical Fokker-
Planck-Kramers equation. A closed equation for P can be
obtained also in the harmonic case, where A does not de-
pend on X(u), Q(u). These two exact realizations prompt
the way to proceed in the nonlinear case. Since K(t′) ex-
ponentially decreases for t > max(hβ, Γ−1), and can this
time be assumed small in the quasiclassical domain, one
can make a Taylor expansion of the exponent in equa-
tion (73), and keep only the first term:{

exp
∫ t

t−s
duA(x(u))

}
+

≈ esA(x(t)). (74)
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Due to the δ-function in equation (72), we may then re-
place the fluctuating x(t), q(t) by the sure variables x, q,
after which Φ is no longer a fluctuating quantity, and
can be taken outside the averaging in equation (72), thus
bringing a closed equation for P . Φ will be calculated with
help of the flowing formula[

esA(x)
]
k1

= −
∮

dz
2πi

esz
[

1
A− z × 1

]
k1

, (75)

where 1 is the 4×4 unit matrix. Our step (74) is still exact
for the harmonic initial potential V .

The final result that we obtain is a diffusion-type equa-
tion for P itself:

∂P(P,X,Π,Q, t)
∂t

= −P
m

∂P
∂X

+
∂

∂P

([
γ

m
P +

∂H
∂X

]
P
)

− Π

m

∂P
∂q

+
∂

∂Π

([
γ

m
Π +

∂H
∂Q

]
P
)

+ γDPP (X,Q, t)
∂2P
∂P 2

+
∂2

∂P∂X
[DXP (X,Q, t)P ]

+ γDΠP (X,Q, t)
∂2P
∂P∂Π

+
∂2

∂P∂Q
[DQP (X,Q, t)P ] ,

(76)

where we have changed y1 7→ P , y2 7→ X , y3 7→ Π,
y4 7→ Q, and diffusion coefficients DPP , DXP , DΠP , DQP

are instantaneous functions of X , Q and t, and no longer
functionals of the history. Since the analytic structure of
the diffusion coefficients is somewhat involved, it will be
explained gradually. All diffusion coefficients converge to
finite values for large times. This convergence is exponen-
tial, and has a characteristic frequency

min1≤k≤4[Re(ωk)], (77)

where

ω1,2 =
γ

2m

(
1±

√
1 +

4mb1
γ2

)
, (78)

ω3,4 =
γ

2m

(
1±

√
1 +

4mb2
γ2

)
, (79)

and where

b1,2 =

− 1
2

[
∂xxH+ ∂qqH∓

√
(∂xxH− ∂qqH)2 +

4
m2

[∂xqH]2
]
.

(80)

It is seen that in order to have Reωk ≥ 0, which is neces-
sary for convergence, one has to require the conditions of
local stability

∂XXH + ∂QQH ≥ 0,

∂XXH ∂XQH ≥ [∂XQH]2. (81)

Hereafter they will be assumed to be satisfied.
Let us now present explicit formulas for the stationary

values of the diffusion coefficients:

DPP (X,Q) =
1

m(b1 − b2)

∫ ∞
0

dω
π
K̄(ω)ω2

×
[

b1 + ∂qqH
(ω2 + ω2

1)(ω2 + ω2
2)
− b2 + ∂qqH

(ω2 + ω2
3)(ω2 + ω2

4)

]
, (82)

DXP (X,Q) =
1

m(b1 − b2)

∫ ∞
0

dω
π
K̄(ω)

×
[

(b1 + ∂qqH)(ω2 + b1/m)
(ω2 + ω2

1)(ω2 + ω2
2)

− (b2 + ∂qqH)(ω2 + b2/m)
(ω2 + ω2

3)(ω2 + ω2
4)

]
,

(83)

DΠP (X,Q) =
∂xqH

m(b1 − b2)

∫ ∞
0

dω
π
K̄(ω)ω2

×
[

1
(ω2 + ω2

1)(ω2 + ω2
2)
− 1

(ω2 + ω2
3)(ω2 + ω2

4)

]
, (84)

DPQ(X,Q) =
∂xqH

m(b1 − b2)

∫ ∞
0

dω
π
K̄(ω)

×
[

ω2 + b1/m

(ω2 + ω2
1)(ω2 + ω2

2)
− ω2 + b2/m

(ω2 + ω2
3)(ω2 + ω2

4)

]
, (85)

where K̄(ω) is the spectrum of K(t),

K̄(ω) = ~γ ω coth
(
~ωβ

2

)
1

1 + (ω/Γ )2
· (86)

Let us indicate that the diffusion process (76) is non-
Markovian. In the purely classical limit the time-
dependence in the diffusion coefficients disappears, and all
diffusion coefficients besides DPP → T disappear as well.
Only then equation (76) describes a Markovian process.

5 Reduced description

Since equation (76) is still rather complicated, it is rea-
sonable to look for relatively simple limits. One of them
is the overdamped limit, which is characterized by large
values of γ. In this case equation (76) can be reduced to
an equation, which describes only slow variables X , Q.
To proceed with this limit we shall define the following
moments

Mkl(X,Q, t) =
∫

dP dΠ P kΠ lP(P,X,Π,Q, t), (87)

and construct an equation for them starting from
equation (76).

Ṁkl = − 1
m
∂XMk+1,l −

1
m
∂QMk,l+1

− (k + l)γ
m

Mk,l − kMk−1,l ∂XH− lMk,l−1 ∂QH

+ γk(k − 1)DPPMk−2,l − k∂X [DXPMk−1,l]
− l∂Q[DQPMk,l−1] + γklDΠPMk−1,l−1. (88)
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Let us write down few first members of this hierarchy:

Ṁ00 = − 1
m
∂XM10 −

1
m
∂QM01, (89)

Ṁ10 = − 1
m
∂XM20 −

1
m
∂QM11

− γ

m
M10 −M00∂XH− ∂X [DXPM00], (90)

Ṁ01 = − 1
m
∂XM11 −

1
m
∂QM02

− γ

m
M01 −M00∂QH− ∂Q[DQPM00], (91)

Ṁ20 = − 1
m
∂XM30 −

1
m
∂QM21 −

2γ
m
M20

− 2M10∂XH+ 2γDPPM00 − 2∂X [DXPM10],

(92)

Ṁ02 = − 1
m
∂XM12 −

1
m
∂QM03

− 2γ
m
M02 − 2M01∂QH− 2∂Q[DQPM01] (93)

Ṁ11 = − 1
m
∂XM21 −

1
m
∂QM12

− 2γ
m
M11 −M01∂XH−M10∂QH

+ γDΠPM00 − ∂X [DXPM01]− ∂Q[DQPM10].

(94)

In the first order of large γ one can skip the time-
derivatives in equations (89, 90), since they are at least
of order O(γ−2). Further from equations (89–91) one gets
the following approximate relations

M20 = mDPPM00, (95)

M02 = O(γ−2), (96)

M11 =
1
2
mDΠPM00. (97)

Notice from equation (84) that DΠP is of order 1/γ
for large γ. These equations are substituted into equa-
tions (89, 90), which in combination with equation (89)
brings the following reduced equation for the M00 =
F(X,Q, t), which is the probability distribution of the
slow variables:

γ ∂tF(X,Q, t) = ∂X [F∂XH] + ∂Q[F∂QH] + ∂XQ[FDΠP ]
+ ∂XX [FDXX ] + ∂QQ[FDQP ], (98)

DXX = DXP +DPP . (99)

The first two terms in the r.h.s. of equation (98) are due
to drift, whereas other terms are responsible for the dif-
fusion. Let us now discuss this situation in details. In the
classical limit, which is realized for sufficiently large tem-
peratures or for ~ → 0, one has DXP → 0, DQP → 0,
DΠP → 0 and DPP → T . Thus, equation (98) goes to the
corresponding classical Fokker-Planck equation. As equa-
tions (48, 49, 98) show, no noise is acting on the Q-particle,
therefore in the classical case it just relaxes to zero and

does not fluctuate at all. Therefore, despite non-linearity
of the potential V (x), the classical variables X,P decou-
ples from the quantum variables Q,Π and tend to the
classical Gibbs distribution. The quantum variables dis-
appear, as seen also from equations (96, 97). Recall that
the very fact of this homogeneous disappearance is con-
nected with the exponential damping (49) of the singular
term ~2σ(t)2/(8mQ2) in the effective Hamiltonian (50).

On the other hand, in the quantum case equation (98)
shows that both variables X and Q become correlated and
involved in a common dynamics. Moreover, as follows from
equation (97), there is a well-defined correlation between
Π and P . In particular, through interaction with the clas-
sical variables quantum variables become coupled to the
thermal bath.

6 Conclusion

This paper was devoted to the mean-field (variational)
theory of quantum Brownian motion. Mean-field meth-
ods are widely applied in quantum theory [4–6] and have
an established range of validity. Their general property is
reduction of an initially quantum problem to an approxi-
mation involving only effective (mean-field) variables with
classical (commuting) behavior [18]. The original quantum
character of the problem is then reflected through an ef-
fective Hamiltonian. These properties of the mean-field
description for closed systems were established also for
more general cases (e.g. the time-dependent Hartree-Fock
approximation), where the generated effective classical dy-
namics does not have the canonical form, but instead can
be embodied into a more general Poisson structure [18].

Being motivated by the effectiveness of the mean-field
approach, we considered here its application to the prob-
lem of quantum Brownian motion, which is the main rep-
resentative model of quantum open systems.

Our first step was to substitute the original quantum
problem by an auxiliary semi-quantum one, where only
a part of degrees of freedom is quantum. In this exact
step it is possible to replace the operator-valued quan-
tum noise by an auxiliary classical Gaussian noise, which
has the same spectrum as the original quantum noise. In
that way we obtain the generalized Wigner-Moyal equa-
tions (21, 22). In this step our description uses negative
probabilities in the sense that the unaveraged density ma-
trix (25) does have negative eigenvalues. However, no un-
physical results appear in the level of observables quan-
tities. The negative probabilities appear as the cost for
having explicitly classical elements in a quantum dynam-
ics. This situation is reminiscent of the ordinary Wigner
function which also cannot be interpreted as a probability
density, but which shares some of its properties and does
predict correct quantum mechanical averages.

At the second step of our description we applied the
Gaussian approximation to the unaveraged Wigner func-
tion. By this procedure the initial quantum stochastic
problem became reduced to a problem of two classical
particles with friction and classical noise. This noise is
nevertheless not white, but is correlated with the same
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spectrum as the original quantum noise. Further investi-
gation allowed us to uncover an important role played by
friction in establishing classical aspects of the problem. It
appeared that a singular ~-dependent term in the effective
Hamiltonian (50) is diminished by friction with a char-
acteristic time (49) inversely proportional to the damp-
ing coefficient. This ensures the existence of the unique
and homogeneous classical limit for times larger than the
above characteristic time. This fact is contrasting with the
non-commutation of the classical (~ → 0) and long-time
t→∞ limit for (closed) Hamiltonian systems [2]. At low
temperatures, where the quantum effects are essential, the
dynamics of the mean-field degrees of freedom is essen-
tially different, because they become correlated with each
other. This is shown in particular by equations (97, 98).
In other words, the effective classical dynamics still con-
tains ~/T as a correlation time of the classical noise, and
therefore displays essential different dynamical behavior
for high and low temperatures [15].

In the present paper we restricted ourselves to the gen-
eral framework of the mean-field quantum Brownian mo-
tion. More specific applications, e.g. for open many-body
systems, are planned to be considered in the future. Fi-
nally, it is hoped that the paper will open a road for ap-
plications of mean-field methods in quantum dissipative
systems.
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